116 research outputs found

    Molecular Dynamics Simulations of a Pressure-induced Glass Transition

    Full text link
    We simulate the compression of a two-component Lennard-Jones liquid at a variety of constant temperatures using a molecular dynamics algorithm in an isobaric-isothermal ensemble. The viscosity of the liquid increases with pressure, undergoing a broadened transition into a structurally arrested, amorphous state. This transition, like the more familiar one induced by cooling, is correlated with a significant increase in icosahedral ordering. In fact, the structure of the final state, as measured by an analysis of the bonding, is essentially the same in the glassy, frozen state whether produced by squeezing or by cooling under pressure. We have computed an effective hard-sphere packing fraction at the transition, defining the transition pressure or temperature by a cutoff in the diffusion constant, analogous to the traditional laboratory definition of the glass transition by an arbitrary, low cutoff in viscosity. The packing fraction at this transition point is not constant, but is consistently higher for runs compressed at higher temperature. We show that this is because the transition point defined by a constant cutoff in the diffusion constant is not the same as the point of structural arrest, at which further changes in pressure induce no further structural changes, but that the two alternate descriptions may be reconciled by using a thermally activated cutoff for the diffusion constant. This enables estimation of the characteristic activation energy for diffusion at the point of structural arrest.Comment: Latex using Revtex macro

    Focus Optimization of the SPIRIT III Radiometer

    Get PDF
    The spatial infrared imaging telescope (SPIRIT III) radiometer is the primary instrument aboard the Midcourse Space Experiment (MSX), which was launched on April 24, 1997. The Space Dynamics Laboratory at Utah State University (SDL/USU) developed and implemented a ground-based procedure to optimize the focus of the SPIRIT III radiometer. The procedure used point source data acquired during ground measurements. These measurements were obtained with a calibration source consisting of an illuminated pinhole near the focus of a cryogenically cooled collimator. Simulated point source measurements were obtained at multiple focus positions by translating the pinhole along the optical axis inside and outside the optimum focus of the collimator. The radiometer was found to be slightly out of focus, and the detector focal plane arrays were moved to positions indicated by the test results. This method employed a single cryogenic cycle to measure both the distance and direction needed to adjust each array for optimal focus. The results of the SPIRIT III on-orbit stellar point source observation demonstrate the success of the technique. The method and hardware used to achieve focus optimization are described

    Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    Get PDF
    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined

    Characterization of Pfiesteria Ichthyocidal Activity

    Get PDF
    Letter to the Editor regarding article: Drgon, T., et al. 2005. Characterization of ichthyocidal activity of Pfiesteria piscicida: Dependence on the dinospore cell density. Appl. Environ. Microbiol. 71:519–52

    Radiometric Stability of the SABER Instrument

    Get PDF
    The SABER instrument on the National Aeronautics and Space Administration Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics satellite continues to provide a long‐term record of Earth\u27s stratosphere, mesosphere, and lower thermosphere. The SABER data are being used to examine long‐term changes and trends in temperature, water vapor, and carbon dioxide. A tacit, central assumption of these analyses is that the SABER instrument radiometric calibration is not changing with time; that is, the instrument is stable. SABER stratospheric temperatures and those derived from Global Positioning System Radio Occultation measurements are compared to examine SABER\u27s stability. Global Positioning System Radio Occultation measurements are inherently stable due to the accuracy and traceability of the measured phase delay rate to the Système Internationale definition of the second. Differences in global annual mean SABER and COSMIC lower stratospheric temperatures show little significant change with time in the 11 years spanning 2007–2017. From this analysis we infer that SABER temperatures are stable to better than 0.1 to 0.2 K per decade

    Good day sunshine: Stock returns and the weather.

    Get PDF
    Abstract Psychological evidence and casual intuition predict that sunny weather is associated with upbeat mood. This paper examines the relation between morning sunshine at a country's leading stock exchange and market index stock returns that day at 26 stock exchanges internationally from 1982-97. Sunshine is strongly significantly correlated with daily stock returns. After controlling for sunshine, rain and snow are unrelated to returns. There were positive net-of-transaction costs profits to be made from substantial use of weather-based strategies, but the magnitude of the gains was fairly modest. These findings are difficult to reconcile with fully rational price-setting

    Nanoparticles for Local Drug Delivery to the Oral Mucosa: Proof of Principle Studies

    Get PDF
    Purpose To determine if solid lipid nanoparticles represent a viable strategy for local delivery of poorly water soluble and unstable chemopreventive compounds to human oral tissues. Methods Nanoparticle uptake and compound retention evaluations employed monolayer-cultured human oral squamous cell carcinoma (OSCC) cell lines and normal human oral mucosal explants. Feasibility of nanoparticle delivery was also evaluated with respect to the presence of phase-III efflux transporters in normal oral mucosal tissue and OSCC tissues. Results Functional uptake assays confirmed significantly greater internalization of nanoparticle-delivered fluorescent probe relative to free-fluorescent probe delivery, while concurrently demonstrating nanoparticle uptake rate differences among the OSCC cell lines and the phagocytic control human monocyte cell line. Mucosal explants exhibited nanoparticle penetration and internalization in the spinous and basal epithelial layer

    Protocol for a home-based integrated physical therapy program to reduce falls and improve mobility in people with Parkinson’s disease

    Get PDF
    Background The high incidence of falls associated with Parkinson’s disease (PD) increases the risk of injuries and immobility and compromises quality of life. Although falls education and strengthening programs have shown some benefit in healthy older people, the ability of physical therapy interventions in home settings to reduce falls and improve mobility in people with Parkinson’s has not been convincingly demonstrated.Methods/design 180 community living people with PD will be randomly allocated to receive either a home-based integrated rehabilitation program (progressive resistance strength training, movement strategy training and falls education) or a home-based life skills program (control intervention). Both programs comprise one hour of treatment and one hour of structured homework per week over six weeks of home therapy. Blinded assessments occurring before therapy commences, the week after completion of therapy and 12 months following intervention will establish both the immediate and long-term benefits of home-based rehabilitation. The number of falls, number of repeat falls, falls rate and time to first fall will be the primary measures used to quantify outcome. The economic costs associated with injurious falls, and the costs of running the integrated rehabilitation program from a health system perspective will be established. The effects of intervention on motor and global disability and on quality of life will also be examined. Discussion This study will provide new evidence on the outcomes and cost effectiveness of home-based movement rehabilitation programs for people living with PD

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent
    corecore